

Some of the proprietary products

While1
(www.while1.com)

 FELIX - Fast Emulator & Legacy Interface eXtender

 WMTK – Real Time Kernel

Our experience in developing basic software and particularly UNIX kernels
resulted in a product that provided us a REAL-TIME and TIME-SHARING MULTI-
TASKING support on non standard hardware systems, which do not have and
cannot have a standard operating system. WMTK is then used to work out all
issues occurring in the so-called "embedded" systems, where there must be a
kernel that hosts multiple TASKS at the same time and grants real-time
operativeness. WMTK purpose is to be a cost-effective solution to REAL-TIME
issue. Other well- known products of this kind undoubtedly use integrated
advanced systems for development and debugging, but they are actually very
expensive and need Royalties for each installation. WMTK has the following key
features:

o It is extremely easy to use.
o Minimum disk space required: 10 Kb.
o Modular kernel, which are open to any extension.
o DDK interface for drivers development.
o Written in "C" (easily portable on any hardware platform).
o Version for Intel 80x86 and Motorola 68xxx environments is already

available.
o Sources available
o Very Low price
o It can be integrated with INTDEB and MOTDEB

Along with a developing phase still in progress, we are also adding in WMTK LAN
support and particularly TCP/IP protocol, with its MAC drivers for the most
common adapters in PCI (3com, Zynix, etc.) architecture.

Applications running on WMTK environment will be able to use traditional LAN
interfaces, such as SOCKETS or TLI.

TSI – Transport Session Interface

WHILE1 designing component, named TSI (transport session interface),
can establish a connection-oriented channel for communications between
two or more entities, thus releasing applications from the physical
communication mode.

 TSI implies a series of communication devices, such as the following:

• Socket on TCP/IP
• X25 (IBM boards, EICON boards)
• Windows Pipes (only Microsoft WIN32)
• Windows Mailbox (only Microsoft WIN32)
• TLI (only Unix)
• Netbios (only Microsoft DOS and Windows 3.1x)
• KERMIT serial protocol
• WISP (While1 Internal Serial Protocol)
• Raw mode (no protocol)
• WANAPPC on Microsoft SNA server
• HLLAPI on any systems working in 3270/5250 emulation

 With all listed protocols on ever communication channels are available next
features:

• Compression
• Encription
• 7 bit Coded

TSI is designed to
export to applications a
transport interface,
which is completely
independent from the
communication system
used. You will then be
able to write
applications regardless
of the communication
interface system you
want to use at present
or in future. In addition,
the same application
can be hosted by
systems which use
different communication
methods, with no
changes.

You might also use
TSI if you need
resilient links, in case

you expect to connect clients with servers using more than one
connection. You will then start concurrent connections, physically different,
always using the same interface.

TSI interface semantics is rather like the Socket (BSI) interface, so it is
easy to use and understand.

TSI is available on Microsoft systems: DOS, Windows 3.11, Windows
95/98 and Windows NT/2000, and on UNIX standard systems as well,
such as: SCO, UnixWare, Solaris, HP-UX, Linux etc.

In particular situations you can still execute porting even on systems which
are different from the above mentioned

 PLDEB – Remote PipeLine Debugger

RPLDEB is a symbolic debugging tool for the software developer.
It provides an efficient, easy-to-learn environment for the otherwise
 complex process of assembly or machine language problem diagnosis
on the systems 8086 (real mode based).

If you use an assembler or any higher level, compiled language and need
to observe your program’s operation to diagnose its problems, this is the
tool for you.

RPLPDEB is the remote version of original PLDEB tool, and is composed
by two part. The first part, named CORE, is loaded on the target system
and the second part, named USER, is loaded in the PC debugger
machine.

The RPLDEB use a serial RS232 line to link CORE and USER
 part, and using this architecture is possible to develop inside target
system a little piece of code that execute a CORE debugger functions
(STOP, GO, R/W-MEMORY, SINGLE_STEP, ...).

User interface part is execute on the PC machine and is separated from
the CORE.

Its main features are:

• COMMAND ARE EASY. There are no commands. Simply fill in the
blanks. The base case function keys are the only “commands” and 7 of
these have consistent meaning throughout RPLDEB. No complicated
key sequences. Not much to learn here...

• SYMBOLIC ADDRESSING. All addresses may be specified symbolicly
using your own names. Addresses may be specified as any combination
of symbols, register and offsets.

• STANDARD KEYBOARD FUNCTIONS. Full screen format with full
use of standard cursor, scroll, and character control keys.

• SCREEN COEXISTENCE/GRAPHICS. A debugger does nor have to
interfere with your program’s use of the screen. The test program’s
screen contents and mode are constantly preserved while RPLDEB is in
control and restored for the single step or breakpoint.

• TEXT FILE BROWSING. Any standard text file may be viewed without
leaving or interfering with the debug process. Want to consult the listing?

• SIXTEEN BREAKPOINTS. Each breakpoint can be set for a variable
number of occurrences. The program is not interrupted until that number
is reached. A total for each breakpoint is displayed. How many times did
it go through there? or, Stop that loop on the 999th entry?

• LOOP BREAKER You say your program is looping and not
 hitting that breakpoint? With other debuggers, program loops, even
those enabled for interrupts can force you to power the machine off to
regain control. With RPLDEB, program loops which have not
destroyed memory or disabled interrupts can be interrupted. This can be
a life saver.

• VERSATILE SINGLE STEPPING. From one to over 64,000 single
steps can be specified at each ‘go’ (yes, RPLDEB is fast enough to
make that number practical), and a total is displayed. Want to count
instructions? Or “see” when the data goes bad?

• CONSTANT SYMBOLIC LOCATION DISPLAY. The symbolic
 instruction pointer is constantly updated and displayed while single
stepping.

• CONSTANT DISPLAY MEMORY. 9 lines of 16 bytes each, each
showing its own user-specified memory area in HEX and ASCII, are
constantly displayed while single stepping. Watch the data change.

• FAST INTERRUPT ROUTINES. Interrupt routines, unless otherwise
 specified, are treated as a single instruction in single step mode.
Makes single stepping a lot safer.

• FAST “LONG” INSTRUCTIONS. CALL or REP prefix instruction may
be treated as a single instruction by using the “SKIP” function key in
single step.

• SINGLE STEP HISTORY. The history of the last 6 single stepped
 instructions and contents of key maching registers and flags are
displayed.

 SCUBE – SNMP Super Poller

SCUBE (SNMP Shot Sentinel => S3 => Scube) product is an application
able to collect information coming from systems and devices that exports
them via SNMP protocol.

There are more reasons that push us to carry out this object, so target and
architecture definition were defined after a deep study on the most
common pollers.

The considerations arose after this study (positive and negative) on the
other products, led to the SCUBE project definition.

 High Performances

SCUBE has been designed to reach high performances. Code has been
written trying to optimize every function and system resources use has
been projected taking their efficiency in consideration according to the
operating systems on which SCUBE is used.

System calls and library-functions set used has been chosen emphasizing
performances aspect.

Measurements performed on some HP systems used as reference, allow
us to assert that SCUBE can receive data of 40.000 objects per minute.

Scalability

SCUBE has been designed to be used on a wide range of systems,
therefore it can operate both on small systems and big Main-Frames.

Its structure adapts easily on available resources. It requires only what the
system can offer in terms of memory/processes/communication etc.

It is obvious that the more powerful host system is the higher
performances you will get.

Distributed execution

To guarantee the maximum scalability to SCUBE, we adopted an Inter
Process Communication architecture among the processes. In this way,
some poller's modules can be run on remote system as well.

What you can get is a real distributed system, able to satisfy any load of
jobs.

To avoid the excessive use of IPC, we configure "remotized" mode only if
strictly necessary; in the other situations, usually we work locally using the
most efficient system.

Load balancing among the processes composing operating scenario is
always dynamically computed and modified according run-time progress.

Portability

SCUBE code has been completely developed in system-independent
mode, so it is easily portable on every operating system.

The pieces of code strictly related to the operating systems are inserted in
libraries that provide common interfaces to poller application layer.

To port the poller on a new operating system, we only have to write a new
interface library to convert poller application needs in OS specific system
calls.

Small dimension

"Small is beautiful"... it's true for SCUBE. The poller is composed by few
parts; so for installation and run-time you have to control few components
(processes, system resources, configuration files).

The target "few elements" does not reduce project complexity; indeed
SCUBE core contains more than 22,000 code lines and SNMP library
derived from UCD version has 28,000 circa.

Reduced use of system resources

To contain strong loads, we tried to design an architecture that does not
require too many operations to handle processes and memory resources
(semaphores, shared memories, message queues).

Following this dircetive, we tried to define a number of processes (threads)
correctly dimensioned on the basis of polling run-time needs and not on
fixes rules defined once by an administrator.

Therefore, there is an auto-tuning performed by the poller itself depending
on the amount of operations to perform.

Compatibility

SCUBE is compatible with HP OpenView; it can substitute HP product
without particular integration effort.

Both input and output files have same formats.

SCUBE is ready to communicate with SNMP Agents operating with SNMP
protocol version 1,2 and 3.

Setting and total tuning

Poller is fully settable; that is all the levels inside it can be dimensioned
and set depending on the installation to be performed.

Setting is extended from system resources use (socket, files, etc.) to
SNMP protocol tuning.

WHILE 1 S.r.l.
 TThhee mmeeaassuurree ooff qquuaalliittyy

www.while1.com

www.biospc.com www.unix-drivers.com
 www.ms-drivers.com www.scsi-drivers.com

info@while1.com

Italy Headquartier : Corso Turati, 70 - 10134 Torino

Italy office : Environment Park Via Livorno, 60 - 10144 Torino Tel./Fax. +39 (011) 2257721

Italy office : ICO Centrale, Via Jervis, 9 - 10015 Ivrea (To) Tel./Fax +39 (0125) 641607

USA office: 405 El Camino Real #219 - Menlo Park CA 94025 Tel. +1 (650)317.19.74

