i raltated <

part n.6 ekt

p’a’&lal uﬂwaro implementation.
~ il

& Emh&ﬂﬂ software

ork software

ltuuluﬂl and proprietary protocols design
Special application file transfer and

= Host l.ylhm: interface software

“ m-r and'Network elements
Provisioning systems
l_pne_ﬂnl appliance applications

I Mission critical software
World wide company mission critical appllﬂthns

| | “ |
Software products

}'L"/’% R,

.'- I

Some of the proprietary products

While1

(www.whilel.com)

FELIX - Fast Emulator & Legacy Interface eXtender

FELIX provides host
publishing for Legacy
applications.

Product Highlights
FELIX is a product that provides weh
access fo Legacy systems.

It allows both raw web access to
legacy system and the possibility to
build enterprise applications for
legacy services integration.

This means that there is the
possibility to map host screenshots
one to one or automatically browse
between host applications, in an
easy way,

Choose your best host access
way for your own business.

« Choosing to map the screenshots
as they were developed, you can
access via internet your Legacy
systems without modifying host
applications but improving the
security policy. Moreover you will
be able to work with your internet
client without instaling any
components, just through your
internet browser.

Using the Software Development
Kit (SDK) you will be able to
develop powerful applications that
perform an interactive work with
Legacy environment.

For example you can write an
application that receives as input
parameters the data through a web
page .dealng them on more
screenshots,

With this method you will improve
the performance of your application
because the interaction between
user and host applications is based
on a new service built collecting
and using old host transactions.

-

-

Other features of
FELIX service.
This product manages, using a

database, all user access to the host
applications.

This means that it can manage the
number of user accesses choosing
user and password, in order to allow
a connection in a transparent mode
for each user.

FELIX manages the access to host

applicatons through following
protocols:
3270
. 3270
* 5250
. 5250F

FELIX is based on distributed
services on the network, in order fo
manage load balancing to achieve
scalability and reliability.

Felix Network Architecture

e
. |\" NTERNET o
= - 5 F
Cliant -H\(E!"x.,_,

LOW FIREWALL.
Conly fot poat B0
st 415 itk Big

& écuare mocass)

I
DMZ | APPLICATION |

e /
HTTFHTTPFS / 4
A J)(

|f 3

-‘ Etu.-_ix| l

“\;\\

\

HIGH
FIREWALL

LEGACY

APPLICATIONS

FELIX System hosting

FELIX architecture as it looks like
in the picture above.

A thin client can connect through
its browser via internet and can
place requests for any operation
to FELIX.

Then the requests pass to Low
Firewall (access only for port 80
and 443 with secure access
https) by means of protocol
hitp/https. in order to enter in the
Demilitarized zone (DMZ}.

Here sits the Web Server that
can be represented by ‘IS 7,
“APACHE" . "WEBSPHERE"™ on
WINDOWS2000 Server 08 or
UNIX.

Moreover all the client's requests
are collected and are forwarded
to the FELIX service residing in
the Secure Application zone.

Before getting into Application
zone there's the second access
to firewall (in this case High
Firewall) .

Here FELIX interacts with host
applications (by means of protocol
Telnet) on Legacy System .

Felix Architectural Overview

Buary app liaation that raed bo parform a wab
ba=ad Host-Tran3ction al acditles.
Tha Zpplieation interfea to hu & qumidaragar
could be Doom, Hp , Soddet Prop decany, ...

Applicedion Reguastor

r’d‘-ﬂ_\-\-_\-\"‘\-\.
WHGE Y™

| Globsl Varshle
hanager]

- £
[exa, .ogi, =sp,) i

F 3

[¢ ¥

[Frotocal Wiappers (Dieom, Hitp]

tdanage the dialo g betwecn the applicatiors and the
FCPIM's and perionT the Keepallve” o the MHGWT.

WHCM [Connadion Manzgar)
The entry-polrt 1or every app keation request.

53

Tran=sction=-Oriznted Plugin
Alowsto perform Heg-appication 5|
ravigation legieal. Tha applieation =
soripts takes advantage o fa total

: WHScom ind apendrn e drim thee teranne
1| Mmnmpe e diaing
: withthe Host
tranzaction=. The WHSCpn.]
{ leprriectian pratocol is Haagathzdaky
i incopmlatedin &. :";::;:f WiHScpm
d tSngle Cornecdon
' Procas: Warager)
S e R S S e e o e e R P

@ T wiarage user and dispateh
tha password keysandtha
working 1 firsingle
sasgions . hlanaga tha
Load-baancing prltica
oerthe UHA.

WHEL
Jezgon conzgle,
Mo the
WHPAImIn strakorto
taka undar cantral Jl
1hE procasser, wih
pawsTon ewery
single sassion .

WP
H hianage allthe Host-

i securty poktical,

: Mistributin g tha Host-accass

i |keystothe WHEwm irche
1 sinple sassione.

Reference of Felix use:

* B41 Project.

We have developed an application
that uses some of Felix capabilities.

Our goal was to abtain something
able to move all old host
screenshots into new graphic
interface as a common web site.

Moreover we wanted improve the
performance application because
we were using a very slow net on
the client side.

In order to obfain our goal we
realized a Felix plug-in able to use a
script that automatically browse
through host interface. In this way
the user performs all inputs in a
friendly web page that posts the
data to the web server. The web
server through the Felix plug-in
interacts with host performing all
needed transactions in different
screens, returming the final results
to the user.

* Friend Web

We developed an application that
uses Felix to access to AS/400,

The applications on the AS/400 were
developed using the screen as a
buffer for read and write data.

The plug-in of this application allows
to the Web to work with this
methodology.

In both projects security and single
sign-on fundaments were performed.

The security was assured by the use
of HTTPS from internet client.

The “single sign-on” was realized
using Felix user access feature
configuring links of WEB

and Host Login Information.

s CNH European Dealer
Connection

This is the simplest example of Felix -
Based development.

In fact we created a dynamic web
page that forwards user-inputs to the
host (via Felix) and shows on the
browser its response-screen.

The user has only to log into the web,
and he gets into the Host!

So that it's possible web surfing
among all the Focus-Multi-Market
transactions. Therefore no
translations are required.

7500 dealers will be connected via
Felix to CNH AS400 environments.

WMTK - Real Time Kernel

Our experience in developing basic software and particularly UNIX kernels
resulted in a product that provided us a REAL-TIME and TIME-SHARING MULTI-
TASKING support on non standard hardware systems, which do not have and
cannot have a standard operating system. WMTK is then used to work out all
issues occurring in the so-called "embedded" systems, where there must be a
kernel that hosts multiple TASKS at the same time and grants real-time
operativeness. WMTK purpose is to be a cost-effective solution to REAL-TIME
issue. Other well- known products of this kind undoubtedly use integrated
advanced systems for development and debugging, but they are actually very
expensive and need Royalties for each installation. WMTK has the following key
features:

o Itis extremely easy to use.

o0 Minimum disk space required: 10 Kb.

o Modular kernel, which are open to any extension.

o DDK interface for drivers development.

o Written in "C" (easily portable on any hardware platform).

o Version for Intel 80x86 and Motorola 68xxx environments is already
available.

0 Sources available

o Very Low price

o It can be integrated with INTDEB and MOTDEB

Along with a developing phase still in progress, we are also adding in WMTK LAN
support and particularly TCP/IP protocol, with its MAC drivers for the most
common adapters in PCI (3com, Zynix, etc.) architecture.

Applications running on WMTK environment will be able to use traditional LAN
interfaces, such as SOCKETS or TLI.

TSI - Transport Session Interface

WHILE1 designing component, named TSI (transport session interface),
can establish a connection-oriented channel for communications between
two or more entities, thus releasing applications from the physical
communication mode.

TSI implies a series of communication devices, such as the following:

» Socket on TCP/IP

e X25 (IBM boards, EICON boards)

 Windows Pipes (only Microsoft WIN32)

* Windows Mailbox (only Microsoft WIN32)

e TLI (only Unix)

e Netbios (only Microsoft DOS and Windows 3.1x)
 KERMIT serial protocol

* WISP (Whilel Internal Serial Protocol)

« Raw mode (no protocol)

* WANAPPC on Microsoft SNA server
 HLLAPI on any systems working in 3270/5250 emulation

With all listed protocols on ever communication channels are available next
features:

e Compression
» Encription
* 7 bit Coded

T51 use example

Client systemn M EDCE)
CLIERT AFFL. | CLIEHT APFL. 2 CLIERT AFFL 3
[HOHITOR]
EEESION IMEE PACT (T5T) |
SOCEET FXEMIT | FAW pantes
TCRE
Pkl -G P e
1
| L Rkite] |

Berver system (Windows NT) i
HERNTL SPACE

—
% e | B2 drivr
TOPAE gkl

OSER FPACE

SOCEET |ma-|rr

| [T

EEESRON INTERPACE (TEL

e N

FERVER APFFL.] ‘ ‘ GERVER AFFL. 2

SEEVER AFFL.3

TSl is designed to
export to applications a
transport interface,
which is completely
independent from the
communication system
used. You will then be
able to write
applications regardless
of the communication
interface system you
want to use at present
or in future. In addition,
the same application
can be hosted by
systems which use
different communication
methods, with no
changes.

You might also use
TSI if you need
resilient links, in case

you expect to connect clients with servers using more than one
connection. You will then start concurrent connections, physically different,
always using the same interface.

TSI interface semantics is rather like the Socket (BSI) interface, so it is
easy to use and understand.

TSl is available on Microsoft systems: DOS, Windows 3.11, Windows
95/98 and Windows NT/2000, and on UNIX standard systems as well,
such as: SCO, UnixWare, Solaris, HP-UX, Linux etc.

In particular situations you can still execute porting even on systems which
are different from the above mentioned

PLDEB - Remote PipelLine Debugger

RPLDEB is a symbolic debugging tool for the software developer.
It provides an efficient, easy-to-learn environment for the otherwise
complex process of assembly or machine language problem diagnosis
on the systems 8086 (real mode based).

If you use an assembler or any higher level, compiled language and need
to observe your program’s operation to diagnose its problems, this is the
tool for you.

RPLPDEB is the remote version of original PLDEB tool, and is composed
by two part. The first part, named CORE, is loaded on the target system
and the second part, named USER, is loaded in the PC debugger
machine.

The RPLDEB use a serial RS232 line to link CORE and USER
part, and using this architecture is possible to develop inside target
system a little piece of code that execute a CORE debugger functions
(STOP, GO, R/IW-MEMORY, SINGLE_STEP, ...).

User interface part is execute on the PC machine and is separated from
the CORE.

Its main features are:

« COMMAND ARE EASY. There are no commands. Simply fill in the
blanks. The base case function keys are the only “commands” and 7 of
these have consistent meaning throughout RPLDEB. No complicated
key sequences. Not much to learn here...

* SYMBOLIC ADDRESSING. All addresses may be specified symbolicly
using your own names. Addresses may be specified as any combination
of symbols, register and offsets.

« STANDARD KEYBOARD FUNCTIONS. Full screen format with full
use of standard cursor, scroll, and character control keys.

« SCREEN COEXISTENCE/GRAPHICS. A debugger does nor have to
interfere with your program’s use of the screen. The test program’s
screen contents and mode are constantly preserved while RPLDEB is in
control and restored for the single step or breakpoint.

* TEXT FILE BROWSING. Any standard text file may be viewed without
leaving or interfering with the debug process. Want to consult the listing?

* SIXTEEN BREAKPOINTS. Each breakpoint can be set for a variable
number of occurrences. The program is not interrupted until that number
is reached. A total for each breakpoint is displayed. How many times did
it go through there? or, Stop that loop on the 999th entry?

 LOOP BREAKER You say your program is looping and not
hitting that breakpoint? With other debuggers, program loops, even
those enabled for interrupts can force you to power the machine off to
regain control. With RPLDEB, program loops which have not
destroyed memory or disabled interrupts can be interrupted. This can be
a life saver.

* VERSATILE SINGLE STEPPING. From one to over 64,000 single
steps can be specified at each ‘go’ (yes, RPLDEB is fast enough to
make that number practical), and a total is displayed. Want to count
instructions? Or “see” when the data goes bad?

* CONSTANT SYMBOLIC LOCATION DISPLAY. The symbolic
instruction pointer is constantly updated and displayed while single

stepping.

« CONSTANT DISPLAY MEMORY. 9 lines of 16 bytes each, each
showing its own user-specified memory area in HEX and ASCII, are
constantly displayed while single stepping. Watch the data change.

* FAST INTERRUPT ROUTINES. Interrupt routines, unless otherwise
specified, are treated as a single instruction in single step mode.
Makes single stepping a lot safer.

* FAST “LONG” INSTRUCTIONS. CALL or REP prefix instruction may
be treated as a single instruction by using the “SKIP” function key in
single step.

* SINGLE STEP HISTORY. The history of the last 6 single stepped
instructions and contents of key maching registers and flags are
displayed.

SCUBE - SNMP Super Poller

SCUBE (SNMP Shot Sentinel => S3=> Scube) product is an application
able to collect information coming from systems and devices that exports
them via SNMP protocol.

There are more reasons that push us to carry out this object, so target and
architecture definition were defined after a deep study on the most
common pollers.

The considerations arose after this study (positive and negative) on the
other products, led to the SCUBE project definition.

High Performances

SCUBE has been designed to reach high performances. Code has been
written trying to optimize every function and system resources use has
been projected taking their efficiency in consideration according to the
operating systems on which SCUBE is used.

System calls and library-functions set used has been chosen emphasizing
performances aspect.

Measurements performed on some HP systems used as reference, allow
us to assert that SCUBE can receive data of 40.000 objects per minute.

Scalability

SCUBE has been designed to be used on a wide range of systems,
therefore it can operate both on small systems and big Main-Frames.

Its structure adapts easily on available resources. It requires only what the
system can offer in terms of memory/processes/communication etc.

It is obvious that the more powerful host system is the higher
performances you will get.

Distributed execution

To guarantee the maximum scalability to SCUBE, we adopted an Inter
Process Communication architecture among the processes. In this way,
some poller's modules can be run on remote system as well.

What you can get is a real distributed system, able to satisfy any load of
jobs.

To avoid the excessive use of IPC, we configure "remotized"” mode only if
strictly necessary; in the other situations, usually we work locally using the
most efficient system.

Load balancing among the processes composing operating scenario is
always dynamically computed and modified according run-time progress.

Portability

SCUBE code has been completely developed in system-independent
mode, so it is easily portable on every operating system.

The pieces of code strictly related to the operating systems are inserted in
libraries that provide common interfaces to poller application layer.

To port the poller on a new operating system, we only have to write a new
interface library to convert poller application needs in OS specific system
calls.

Small dimension

"Small is beautiful"... it's true for SCUBE. The poller is composed by few
parts; so for installation and run-time you have to control few components
(processes, system resources, configuration files).

The target "few elements” does not reduce project complexity; indeed
SCUBE core contains more than 22,000 code lines and SNMP library
derived from UCD version has 28,000 circa.

Reduced use of system resources

To contain strong loads, we tried to design an architecture that does not
require too many operations to handle processes and memory resources
(semaphores, shared memories, message queues).

Following this dircetive, we tried to define a number of processes (threads)
correctly dimensioned on the basis of polling run-time needs and not on
fixes rules defined once by an administrator.

Therefore, there is an auto-tuning performed by the poller itself depending
on the amount of operations to perform.

Compatibility

SCUBE is compatible with HP OpenView; it can substitute HP product
without particular integration effort.

Both input and output files have same formats.

SCUBE is ready to communicate with SNMP Agents operating with SNMP
protocol version 1,2 and 3.

Setting and total tuning

Poller is fully settable; that is all the levels inside it can be dimensioned
and set depending on the installation to be performed.

Setting is extended from system resources use (socket, files, etc.) to
SNMP protocol tuning.

WHILE 1 S.r.l.

The measure of quality

www.whilel.com

www.biospc.com www.unix-drivers.com
www.ms-drivers.com Www.Sscsi-drivers.com

info@whilel.com

Italy Headquartier : Corso Turati, 70 - 10134 Torino
Italy office : Environment Park Via Livorno, 60 - 10144 Torino Tel./Fax. +39 (011) 2257721
Italy office : ICO Centrale, Via Jervis, 9 - 100M5ea (T0) Tel./Fax +39 (0125) 641607

USA office: 405 El Camino Real #219 - Menlo Park CA 94025 Tel. +1 (650)317.19.74

